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ABSTRACT 

An efficient Monte Carlo uncertainty analysis for aerothermal environment modeling of a planetary entry 
vehicle is performed. The efficiency gain is achieved by using Latin Hypercube Sampling (LHS) instead of 
traditionally used random sampling. For small sample sizes the results obtained by the LHS technique are 
shown to be superior in terms of reproducing means and standard deviations. With LHS reasonable values of 
output uncertainty and sensitivity ranking are obtained with a sample size as small as 100. For thermal 
protection system design, an efficient sampling technique allows a Monte Carlo analysis to be applied to more 
complex systems involving three dimensional simulations with coupled physical phenomena. 

1. INTRODUCTION 

The design of a thermal protection system (TPS) for a planetary entry vehicle relies on ground testing as well 
as modeling and simulation of flight environment and material response. Modeling is used to define the 
aerothermal and aerodynamic environments that an entry vehicle will encounter. The environment envelope is 
then used to define a ground testing program in order to to select, design, and qualify a TPS material. 
Available ground testing facilities, however, are unable to reproduce many of the environmental parameters 
deemed critical, which gives rise to ground-to-flight traceability concerns. Modeling and simulation also play 
the critical role of bridging the ground-to-flight traceability gap. Measured data from tests are used for model 
development, which usually involves calibration of unknown parameters, required for various 
phenomenological and physics based models. A thermal protection material generally responds to a variety of 
flow parameters, such as heat flux (sensible, catalytic, and radiative), pressure, shear stress, turbulence, 
enthalpy, etc. Adequate modeling requires an in-depth description of various interacting physical and 
chemical phenomena. Our understanding of these phenomena, and their interactions, vary from excellent to 
extremely poor. A suite of various approximate and phenomenological models are, therefore, employed. 
Understandably, the predictions of modeling and simulation of aerothermal environment and material 
response are not perfect and suffer from uncertainties.  

In order to develop design margins and meet TPS reliability requirements, uncertainty in model predictions 
must be quantified via an uncertainty analysis. An uncertainty analysis identifies the overall prediction 
uncertainty as well as the primary uncertainty drivers that can be subsequently prioritized and targeted for 
further testing and investigation or research. A sensitivity analysis, which is a by-product of the uncertainty 
analysis, provides valuable insights by identifying physical mechanisms that are rate-limiting and must be 
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known with greater fidelity. Aerothermal modeling involves the numerical solution of compressible fluid 
dynamics equations for high speed flows with nonequilibrium chemical kinetics and thermodynamics. Due to 
the inherent nonlinearities, a Monte Carlo analysis is often carried out in order to analyze the sensitivities and 
uncertainties inherent in the chosen physical model. 

A Monte Carlo sensitivity and uncertainty analysis involves random sampling of all input parameters, where 
each parameter is described according to a probability distribution function defining its individual uncertainty. 
For each set of sampled input parameters, a simulation run is made and the output quantity of interest is 
recorded. Typically hundreds to thousands of such sampled sets are run to collect enough statistics. Input-
output correlations and standard deviations are then computed to arrive at various sensitivity coefficients and 
the overall output uncertainty. The details of this process are described elsewhere.1-6 This process has been 
applied to aerothermal and material response codes to determine key input parameters and design margins.1-6 
A Monte Carlo analysis, although necessary, is often limited to one-dimensional or simple two-dimensional 
models, due to overwhelming computational cost to run thousands of simulations. Hence, a more efficient 
sampling scheme that reduces the sample size necessary to obtain realistic results is desirable. In this paper we 
use the Latin Hypercube Sampling (LHS) technique7 to enable a more efficient Monte Carlo analysis. The 
LHS technique more uniformly spans the parameter hyperspace as compared to random sampling when the 
sample size is small. It will be shown that LHS technique can give reasonable values of output uncertainty and 
sensitivity ranking with a sample size that is more than an order of magnitude smaller than what is necessary 
with random sampling. The significant efficiency gain opens the applicability of the Monte Carlo technique to 
a family of more detailed (and computationally expensive) simulations. Some examples of these simulations 
are hypersonic lifting flight trajectories, which require full three dimensional simulations, wake dominated 
flows, and fully coupled simulations. 

The paper presents comparisons of LHS and random sampling for a test case of a 70.2 degree sphere cone 
aeroshell entering the Martian atmosphere on a ballistic trajectory.  The output parameter of interest is the 
stagnation point heat flux. The simulation is performed using the computational fluid dynamics (CFD) code 
called Data-Parallel Line Relaxation (DPLR)8 for hypersonic nonequilibrium flows. The Monte Carlo analysis 
is performed using DAKOTA  (Design Analysis Kit for Optimization and Terascale Applications).9 Interfaces 
are built to enable DAKOTA to build DPLR input files, drive DPLR, and record DPLR output during the 
analysis. The results presented in this paper focus on the merits of LHS technique as the sample size is 
reduced. 

2. TEST CASE AND PHYSICAL MODEL 

A. Test Case: Pathfinder Entry into Mars 
The test case in this paper is the Pathfinder entry vehicle, which entered the atmosphere of Mars on July 4, 
1997 at at a relative velocity of 7.5 km/s.10 Mars pathfinder is a good test case because it was a ballistic (non-
lifting) entry at a velocity for which convective heating was large but radiative heating was small. The 
analysis in this work will be performed at the peak heating condition on the entry trajectory:11 

KTskmumkg 169,/596.6,/108.2 34
0 ==×= −ρ  

The forebody of the Pathfinder entry vehicle was a 70.2 degree axisymmetric sphere-cone with a rounded 
shoulder as shown in Fig. 1.  
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Figure 1. 72.2 degree sphere cone Mars Pathfinder aeroshell 

B. Numerical and Physical Models 
The flowfield computations in this work are performed using the computational fluid dynamics (CFD) code 
DPLR.8 DPLR is a parallel multiblock finite-volume code that solves the Navier-Stokes equations including 
finite-rate chemistry and the effects of thermal nonequilibrium. DPLR is a primary tool currently used within 
NASA for aerothermal analysis of Earth and planetary entry vehicles. In addition to the conservation 
equations for mass and momentum, two energy equations are solved; a total energy equation and a combined 
vibro-electronic energy equation. In this formulation it is assumed that the vibrational and electronic modes of 
the gas are in equilibrium with each other, but not with the translational-rotational component. 

Viscosity and thermal conductivity are modeled using the species expressions and mixing rules presented by 
Gupta et al.12 Required collision integrals are taken from Wright et al.13-14 for all binary interactions. The self-
consistent effective binary diffusion (SCEBD) method15 is used to model mass diffusion fluxes. 

C. Chemical Kinetics Model 
The Martian atmosphere consists of approximately 97% CO2 and 3% N2 by volume, with trace amounts of 
other species (primarily Ar). A review of the nonequilibrium kinetics of a shock heated mixture of CO2–N2 
was first presented by Park et al.16 for 18 species ((CO2, NCO, CO, CO+, CN, NO, NO+, N2, O2, O2

+, C2, N, 
N+, C, C+, O, O+, e) with ionization. Mitcheltree and Gnoffo17 subsequently presented a reduced 8 species 
(CO2, CO, NO, N2, O2, N, C, O) mechanism that neglected ionization. The reactions included in these 
mechanisms are listed in Table I. The rates of the common reactions are taken from Park et al.16 At the 
conditions of interest in the present paper the level of ionization in the flowfield is extremely small. Therefore, 
it is expected that the heat flux computed using the Mitcheltree and Gnoffo 8-species model would be an 
accurate representation of the flowfield, and is used in this paper. 

It should be noted that the rates of many of these reactions have not been directly measured at conditions 
relevant to Martian entry. Some are estimated from indirect observations, while other are pure estimates,16 
which make them sources of uncertainty.  
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Table 1. Reaction mechanisms for 8-species Mars entry shock layer 

 Reactions 

1 CO2 + M  ⇔ CO + O + M 
2 CO + M ⇔ C + O + M 
3 N2 + M ⇔ 2N + M 
4 O2 + M ⇔ 2O + M 
5 NO + M ⇔ N + O + M 
6 NO + O ⇔ O2 + N 
7 N2 + O ⇔ NO + N 
8 CO + O ⇔ O2 + C 
9 CO + N ⇔ NO + C 

10 CO2 + O ⇔ O2 + CO 
11 CO + NO ⇔ CO2 + N 
12 CO + CO ⇔ CO2 + C 

 

3. METHODOLOGY 

A. Analysis Procedure 
A Monte Carlo sensitivity and uncertainty analysis involves statistically varying the input parameters and 
tracking changes in the output of interest, in this case, the stagnation point heat flux. The details of the 
methodology can be found in Refs. 1-4. For the sake of completeness we briefly outline the steps involved in 
this work.  

1. Input variables that need to be varied are first identified. Based on the results of past sensitivity 
analysis, only two classes of input parameters are considered important and are varied: chemical 
kinetics rates and transport properties, which determine mass, momentum, and heat transfer across the 
boundary layer.  Since this work focuses only on laminar, non-blowing convective heating 
predictions, input parameters that relate to bulk material properties, material response and turbulence 
models are not considered. For an 8-species kinetic model, 83 input parameters, as shown in Table II, 
are chosen in this work. 

2. An analysis package known as DAKOTA9 is used to sample the input parameters. DAKOTA toolkit 
provides the capability, via integration with a simulation tool, to perform various iterative tasks such 
as optimization, parameter estimation, design of experiments, sensitivity and uncertainty analysis. We 
vary each input parameter independently and symmetrically about their baseline values using a 
Gaussian distribution, width of which represents its uncertainty. The sampling scheme is either 
random or LHS, both options are available in DAKOTA. 

3. Independent input sets generated by varying the parameters are used to make DPLR runs to obtain 
corresponding heat flux values.  

4. Input-output correlation coefficients are computed using linear regression analysis. The overall output 
uncertainty is determined from the measured standard deviation of the output (i.e. stagnation heat 
flux).  
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Table 2. DPLR input parameters to be varied for sensitivity analysis 

Input category Model Parameter 
varied 

No. of input 
parameters 

Mean Std. Dev. 

Dissociation 
reaction rates 

k=A Tη exp(-D/Ta) log10A 40 Ref. 16 0.15 

Exchange 
reaction rates 

k=A Tη exp(-D/Ta) log10A 7 Ref. 16 0.15 

Binary collision 
integral 

Ω1,1 ,Ω 2,2 = Af (T )  A 36 Refs. 13-14 10% 

Total   83   
 

B. Sampling Technique 
LHS is a more efficient sampling technique that provides better coverage over the parameter hyperspace with 
fewer points. In this technique the parameter hyperspace is divided in each orthogonal direction, representing 
each input parameter, in Ns intervals, where Ns is the sample size. The interval size is variable and is defined 
by the probability distribution function such that each interval occupies an equal probability region. A 
hypercube is constructed with the resulting grid consisting of Ns

m cells, where m is the dimension of the 
hyperspace. Each cell in the hypercube now represents an equal probability condition. Cells are now randomly 
chosen, such that each cell is picked only once, and only one cell is picked from each hyper-row (and hyper-
column).  

In a random sampling scheme, which has been used in the past,1-6 sampled points are chosen at random such 
that their likelihood is described by the probability distribution function. In random sampling each new 
sample is independent of all earlier samples. 

4. RESULTS AND DISCUSSION 

A. Input Distribution 
As discussed before, all input parameters are assumed to have Gaussian (normal) probability distribution 
functions, with mean and standard deviation defined in Table II. During most of the discussion, we will focus 
on effect of sample size on quality of results obtained using standard random sampling and the LHS scheme. 
Figure 2 shows distribution function of the CO2-O transport parameter, one of the 83 input parameters 
sampled, as sampled by two sampling schemes. It is evident that as the sample size decreases, the distribution 
produced by random sampling deteriorates rapidly, while the distribution from the LHS scheme maintains an 
acceptable Gaussian profile. A better coverage of the parameter space with small sample sizes, especially in 
low probability region, is a significant advantage of the LHS scheme. These comparisons can be quantified by 
tabulating the mean and standard deviations measured from the sample distributions. Figure 3 shows that in 
almost all cases, the LHS scheme reproduces the specified mean and standard deviation better than the value 
reproduced by random sampling. This figure also shows, for comparison, specified mean and standard 
deviation of this input parameter. We also note that when smaller sample sizes are used, the values of mean 
and standard deviation oscillate for random sampling indicating a large statistical error. The LHS technique, 
on the other hand, yields stable values with small oscillations, although, the difference between specified and 
measured values increase steadily. Even at a large sample size of 2000, the random sampling technique is 
unable to produce the specified value mean and standard deviation up to 3 significant figures. 
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Figure 2. Comparison of sampled input distribution, specified to be a Gaussian,  
and its variation with sample size and sampling scheme. The LHS scheme  

produces better distributions at smaller sample sizes. 

 
 

Figure 3. Mean and standard deviations of a sampled input parameter and their variation with 
sample size and sampling scheme. The specified mean and standard deviation are also shown. 
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B. Output (Stagnation Point Heat Flux) Distribution 
The overall uncertainty in the output quantity of interest is a primary outcome of uncertainty analysis. This 
quantity determines the overall margin applied to the model prediction and could have a profound system 
impact. Figure 4 shows comparisons of mean and standard deviation of stagnation point heat flux. While at 
large sample sizes both techniques yield similar values, for sample sizes below 300, they deviate significantly. 
The random sampling technique shows erratic behavior due to large sampling error. The LHS technique, on 
the other hand, shows reasonable values for both mean and standard deviation of the output quantity of 
interest, even with a sample size as low as 25. The ability to obtain reasonable results with a small sample size 
allows this otherwise expensive technique to now be used for a wider range of complex simulations. 

 
Figure 4. Mean and standard deviations of a output parameter (stagnation point heat flux)  

and their variation with sample size and sampling scheme.  

C. Sensitivity Ranking 
A sensitivity ranking is determined by listing the input parameters in descending order according to their 
correlation coefficients with the output quantity of interest. In this work use the linear (Pearson) correlation 
coefficient for sensitivity analysis. Figure 5 shows the correlation coefficients of all 83 input parameters with 
stagnation point heat flux. For large sample sizes we get the most reliable results as shown in Figure 5 (a 
sample size of 2000). In this case, only 3 out of 83 input parameters stand above all others. These three 
parameters are listed in Table 3. 

Table 3. Three input parameters that show maximum correlation with  
the output quantity of interest (stagnation point heat flux). 

Rank Parameter ID Input Parameter Definition 

1 55 CO2-O Transport 
2 49 CO2-CO Transport 
3 62 CO-O Transport 
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These three parameters determine the transport of heat and mass in the boundary layer, which is primarily 
composed of CO2, CO, and O. This simulation assumes that the wall is supercatalytic, which makes catalytic 
heating diffusion limited. This result suggests that heat transfer to the vehicle surface is limited by the 
collisional transfer of sensible and/or chemical energy across the boundary layer and that the edge of the 
boundary layer has low uncertainty. This result is insightful in that it allows the model developer to focus on 
key parameters to effectively target their investigation. We now seek to assess if the top-3 input parameters 
are identified correctly if a smaller sample size is used. Table 4 shows the sensitivity ranking obtained as the 
sample size is reduced. The numbers marked in red represent errors in identifying the top-3 parameters. As 
shown in Table 5, LHS consistently identifies the top-3 parameters correctly until the sample size is reduced 
below 100. The random sampling on the other hand fails to identify the order of top-3 even with a sample size 
of 1000. It completely misses the top-3 when the sample size is 100. This observation is further demonstrated 
in Fig. 6, which shows the correlation coefficients of all 83 input parameters with a sample size of 100 using 
both techniques. 

 

 
 

Figure 5. Input-output correlation coefficients for all 83 input parameter using a sample  
size of 2000. Only a handful of the parameters show reasonable sensitivity. 
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Table 4. Sensitivity ranking obtained by LHS and random sampling techniques. Sensitivity rankings 
are shown for various sample sizes. The numbers is red indicate an incorrect result due to statistical 

errors. The results at sample size of 2000 are assumed to be correct. 

Sample Size LHS Random 

 inp. param. id. inp. param. id. 
2000 55,49,62 55,49,62 
1000 55,49,62 55,62,49 
300 55,49,62 55,49,62 
100 55,49,62 24,35,5 
50 55,49,16 62,55,21 
25 55,62,72 55,49,50 

 

 

 
Figure 6. Input-output correlation coefficients for all 83 input parameter using a small sample  

size of 100. The LHS technique is still able to identify the top-3 parameters. 
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5. CONCLUDING REMARKS 

A comparison of two different sampling schemes: random sampling and LHS, is used for Monte Carlo 
uncertainty analysis of aerothermal environment modeling. A test case of Mars ballistic entry was chosen to 
perform the analysis and compare the merits of the two sampling schemes. We find that LHS consistently 
reproduces values of mean and standard deviation better than the values obtained by random sampling. LHS 
also identifies the top-3 input parameters even with a sample size as small as 100, which represents significant 
savings for many applications. The ability to use a small sample size extends the applicability of this 
technique to more elaborate simulation more appropriate for TPS design, such as three dimensional 
simulations, problems with full coupling between fluid dynamics and material response, etc. 
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Discusser’s Name:  Bil Kleb 
 
 
Question: How do you accommodate input parameters with realizability constraints, e.g. A ɛ   
[0, 1]? 
 
 
Authors’ Reply: It depends on the physical parameter. In general we use a uniform distribution or 
employ a best and worst case scenario. 
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